Coding and Counting Arrangements of Pseudolines

نویسندگان

  • Stefan Felsner
  • Pavel Valtr
چکیده

Arrangements of lines and pseudolines are important and appealing objects for research in discrete and computational geometry. We show that there are at most 2 n 2 simple arrangements of n pseudolines in the plane. This improves on previous work by Knuth who proved an upper bound of 3( n 2) ∼= 2 n in 1992 and the first author who obtained 2 n 2 in 1997. The argument uses surprisingly little geometry. The main ingredient is a lemma that was already central to the argument given by Knuth.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the number of simple arrangements of five double pseudolines

We describe an incremental algorithm to enumerate the isomorphism classes of double pseudoline arrangements. The correction of our algorithm is based on the connectedness under mutations of the spaces of one-extensions of double pseudoline arrangements, proved in this paper. Counting results derived from an implementation of our algorithm are also reported.

متن کامل

Arrangements of double pseudolines

An arrangement of double pseudolines is a finite family of at least two homotopically trivial simple closed curves embedded in the real projective plane, with the property that any two meet exactly four times, at which points they meet transversely, and induce a cell structure on the real projective plane. In this talk I will show that any arrangement of double pseudolines is isomorphic to the ...

متن کامل

An homotopy theorem for arrangements of double pseudolines

We define a double pseudoline as a simple closed curve in the open Möbius band homotopic to the double of its core circle, and we define an arrangement of double pseudolines as a collection of double pseudolines such that every pair crosses in 4 points – the crossings being transversal – and induces a cell decomposition of the Möbius band whose 2-dimensional cells are 2-balls, except the unboun...

متن کامل

Convex-Arc Drawings of Pseudolines

Introduction. A pseudoline is formed from a line by stretching the plane without tearing: it is the image of a line under a homeomorphism of the plane [13]. In arrangements of pseudolines, pairs of pseudolines intersect at most once and cross at their intersections. Pseudoline arrangements can be used to model sorting networks [1], tilings of convex polygons by rhombi [4], and graphs that have ...

متن کامل

Triangles in Euclidean Arrangements

The number of triangles in arrangements of lines and pseudolines has been object of some research Most results however concern arrangements in the projective plane In this article we add results for the number of triangles in Euclidean arrange ments of pseudolines Though the change in the embedding space from projective to Euclidean may seem small there are interesting changes both in the resul...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Discrete & Computational Geometry

دوره 46  شماره 

صفحات  -

تاریخ انتشار 2011